

Welcome to the pysatMissions documentation!

This documentation describes the pysatMissions module, which contains
routines to generate simualted instruments using Two-Line Elements (TLEs),
as well as apply geomagnetic field models to existing pysat instruments.

	Introduction
	Main Features

	Installation
	Prerequisites

	Installation Options

	Post Installation

	Citation Guidelines
	pysatMissions

	Supported Instruments
	Missions ephem
	Properties

	init()

	load()

	preprocess()

	Missions SGP4
	Properties

	init()

	load()

	Missions Skyfield

	Methods
	magcoord
	add_aacgm_coordinates()

	add_quasi_dipole_coordinates()

	spacecraft
	add_ram_pointing_sc_attitude_vectors()

	calculate_ecef_velocity()

	normalize()

	project_ecef_vector_onto_sc()

	Instrument Methods
	Orbits
	convert_from_keplerian()

	convert_to_keplerian()

	Tutorial
	Set up sgp4 with pysat

	Orbital Propagators

	Empirical Models

	References
	aacgmv2

	apexpy

	OMMBV

	Guide for Developers
	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing
	Short version

	Bug reports

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Project Style Guidelines

	Change Log
	[0.3.4] - 2023-06-22

	[0.3.3] - 2022-09-06

	[0.3.2] - 2022-09-06

	[0.3.1] - 2022-05-18

	[0.3.0] - 2022-05-13

	[0.2.2] - 2021-06-18

	[0.2.1] - 2020-07-29

	[0.2.0] - 2020-03-07

	[0.1.1] - 2019-10-22

	[0.1.0] - 2019-10-07

Introduction

pysatMissions allows users to run build simulated satellites for Two-Line
Elements (TLE) and add empirical data. It includes the missions_ephem and
missions_sgp4 instrument modules which can be imported into pysat.

Main Features

	Simulate satellite orbits from TLEs and add data from empirical models

	Import magnetic coordinates through apexpy and aacgmv2

This document covers installation, a tutorial on pysatMissions including
demonstration code, and an API reference.

Installation

The following instructions will allow you to install pysatMissions.

Prerequisites

[image: powered by pysat Logo, blue planet with orbiting python and the logo superimposed]
pysatMissions uses common Python modules, as well as modules developed by
and for the Space Physics community. This module officially supports
Python 3.8+ and pysat 3.0.4+.

	Common modules

	Community modules

	Optional Modules

	numpy

	pysat>=3.0.4

	aacgmv2

	pandas

	pyEphem
sgp4>=2.7
skyfield

	apexpy
OMMBV>=1.0

Installation Options

1. Clone the git repository

git clone https://github.com/pysat/pysatMissions.git

	Install pysatMissions:
Change directories into the repository folder and run the setup.py file.
There are a few ways you can do this:

	Install on the system (root privileges required):

sudo pip install .

	Install at the user level:

pip install --user .

	Install with the intent to develop locally:

pip install -e --user .

Post Installation

After installation, you may register the pysatMissions
Instrument sub-modules with pysat. If this is your first time using
pysat, check out the quickstart guide [https://pysat.readthedocs.io/en/latest/quickstart.html] for pysat. Once pysat
is set up, you may choose to register the the pysatMissions
Instruments sub-modules by:

import pysat
import pysatMissions

pysat.utils.registry.register_by_module(pysatMissions.instruments)

You may then use the pysat platform and name keywords to
initialize the model Instrument instead of the
inst_module keyword argument.

Citation Guidelines

When publishing work that uses pysatMissions, please cite the package and
any package it depends on that plays an important role in your analysis.
Specifying which version of pysatMissions used will also improve the
reproducibility of your presented results.

pysatMissions

	Jeff Klenzing, Russell Stoneback, Angeline Burrell, Matthew Depew,
& Carey Spence. (2020, July 29). pysat/pysatMissions: Version 0.2.1
(Version v0.2.1). Zenodo. https://doi.org/10.5281/zenodo.3966508

@software{pysatMissions,
author = {Klenzing, Jeff and
 Stoneback, Russell and
 Burrell, Angeline and
 Depew, Matthew and
 Spence, Carey},
title = {pysat/pysatMissions: Version 0.2.1},
month = jul,
year = 2020,
publisher = {Zenodo},
version = {v0.2.1},
doi = {10.5281/zenodo.3966508},
url = {https://doi.org/10.5281/zenodo.3966508}
}

Supported Instruments

Missions ephem

Produce satellite orbit data.

Deprecated since version 0.3.0: pyephem is no longer updated, and the code maintainers suggest skyfield
as a replacement. The functionality of the instrument will be replaced by
the new missions_sgp4 instrument. missions_ephem will be removed in
versions 0.4.0+

Orbit is simulated using Two Line Elements (TLEs) and ephem. Satellite position
is coupled to several space science models to simulate the atmosphere the
satellite is in.

Properties

	platform
	‘missions’

	name
	‘ephem’

	tag
	None supported

	inst_id
	None supported

	
pysatMissions.instruments.missions_ephem.init(self)

	Add custom calculations to orbit simulation.

This routine is run once, and only once, upon instantiation.
Adds custom routines for quasi-dipole coordinates, velocity calculation in
ECEF coords, and attitude vectors of spacecraft (assuming x is ram pointing
and z is generally nadir).

	
pysatMissions.instruments.missions_ephem.load(fnames, tag=None, inst_id=None, obs_long=0.0, obs_lat=0.0, obs_alt=0.0, tle1=None, tle2=None, num_samples=None, cadence='1S')

	Generate position of satellite in both geographic and ECEF co-ordinates.

Note

Routine is directly called by pysat and not the user.

	Parameters:

	
	fnames (list) – List of filenames

	tag (str or NoneType) – Identifies a particular subset of satellite data (accepts ‘’)
(default=None)

	inst_id (str or NoneType) – Instrument satellite ID (accepts ‘’)
(default=None)

	obs_long (float) – Longitude of the observer on the Earth’s surface
(default=0.)

	obs_lat (float) – Latitude of the observer on the Earth’s surface
(default=0.)

	obs_alt (float) – Altitude of the observer on the Earth’s surface
(default=0.)

	tle1 (string or NoneType) – First string for Two Line Element. Must be in TLE format (default=None)

	tle2 (string or NoneType) – Second string for Two Line Element. Must be in TLE format (default=None)

	num_samples (int or NoneType) – Number of samples per day (default=None)

	cadence (str) – Uses pandas.frequency string formatting (‘1S’, etc)
(default=’1S’)

	Returns:

	
	data (pandas.DataFrame) – Object containing satellite data

	meta (pysat.Meta) – Object containing metadata such as column names and units

Example

tle1='1 25544U 98067A 18135.61844383 .00002728 00000-0 48567-4 0 9998'
tle2='2 25544 51.6402 181.0633 0004018 88.8954 22.2246 15.54059185113452'
inst = pysat.Instrument('pysat', 'ephem', tle1=tle1, tle2=tle2)
inst.load(2018, 1)

	
pysatMissions.instruments.missions_ephem.preprocess(self)

	Add modeled magnetic field values and attitude vectors to spacecraft.

Runs after load is invoked.

Missions SGP4

Simulate satellite orbit data using Two Line Elements (TLEs) and SGP4.

Properties

	platform
	‘missions’

	name
	‘sgp4’

	tag
	None supported

	inst_id
	None supported

	
pysatMissions.instruments.missions_sgp4.init(self)

	Initialize the Instrument object with required values.

Runs once upon instantiation.

	
pysatMissions.instruments.missions_sgp4.load(fnames, tag=None, inst_id=None, tle1=None, tle2=None, alt_periapsis=None, alt_apoapsis=None, inclination=None, raan=0.0, arg_periapsis=0.0, mean_anomaly=0.0, epoch=None, bstar=0.0, one_orbit=False, num_samples=None, cadence='1S')

	Generate position of satellite in ECI co-ordinates.

	Parameters:

	
	fnames (list-like collection) – File name that contains date in its name.

	tag (string) – Identifies a particular subset of satellite data

	inst_id (string) – Instrument satellite ID (accepts ‘’ or a number (i.e., ‘10’), which
specifies the number of seconds to simulate the satellite)
(default=’’)

	tle1 (str or NoneType) – First string for Two Line Element. Must be in TLE format. tle1 and tle2
both required if instantiating instrument by TLEs. (defalt=None)

	tle2 (str or NoneType) – Second string for Two Line Element. Must be in TLE format. tle1 and tle2
both required if instantiating instrument by TLEs. (default=None)

	alt_periapsis (float or NoneType) – The lowest altitude from the mean planet surface along the orbit (km).
Required along with inclination if instantiating via orbital elements.
(default=None)

	alt_apoapsis (float or NoneType) – The highest altitude from the mean planet surface along the orbit (km)
If None, assumed to be equal to periapsis (ie, circular orbit). Optional
when instantiating via orbital elements. (default=None)

	inclination (float or NoneType) – Orbital Inclination in degrees. Required along with alt_periapsis if
instantiating via orbital elements. (default=None)

	raan (float) – Right Ascension of the Ascending Node (RAAN) in degrees. This defines
the orientation of the orbital plane to the generalized reference frame.
The Ascending Node is the point in the orbit where the spacecraft passes
through the plane of reference moving northward. For Earth orbits, the
location of the RAAN is defined as the angle eastward of the First Point
of Aries. Optional when instantiating via orbital elements.
(default=0.)

	arg_periapsis (float) – Argument of Periapsis in degrees. This defines the orientation of the
ellipse in the orbital plane, as an angle measured from the ascending
node to the periapsis. Optional when instantiating via orbital elements.
(default=0.)

	mean_anomaly (float) – The fraction of an elliptical orbit’s period that has elapsed since the
orbiting body passed periapsis. Note that this is a “fictitious angle”
(input in degrees) which defines the location of the spacecraft in the
orbital plane based on the orbital period. Optional when instantiating
via orbital elements.
(default=0.)

	epoch (dt.datetime or NoneType) – The epoch used for calculating orbital propagation from Keplerians.
If None, then use the first date in the file list for consistency across
multiple days. Note that this will be set in init. (default=None)

	bstar (float) – Inverse of the ballistic coefficient. Used to model satellite drag.
Measured in inverse distance (1 / earth radius). Optional when
instantiating via orbital elements. (default=0.)

	one_orbit (bool) – Flag to override num_samples and only provide a single orbit.
(default=False)

	num_samples (int) – Number of samples per day. (default=None)

	cadence (str) – Uses pandas.frequency string formatting (‘1S’, etc)
(default=’1S’)

	Returns:

	
	data (pandas.DataFrame) – Object containing satellite data

	meta (pysat.Meta) – Object containing metadata such as column names and units

Note

	Routine is directly called by pysat and not the user.

	Altitude accuracy expected to be on the order of 10 km in Low Earth Orbit.
Efforts to improve accuracy documented under issue #79.

Example

tle1='1 25544U 98067A 18135.61844383 .00002728 00000-0 48567-4 0 9998'
tle2='2 25544 51.6402 181.0633 0004018 88.8954 22.2246 15.54059185113452'
inst = pysat.Instrument('pysat', 'sgp4', tle1=tle1, tle2=tle2)
inst.load(2018, 1)

Missions Skyfield

Methods

magcoord

Routines for projecting aacgmv2 and apexpy model values onto pysat instruments.

	
pysatMissions.methods.magcoord.add_aacgm_coordinates(inst, glat_label='glat', glong_label='glong', alt_label='alt')

	Add AACGM coordinates to instrument object using AACGMV2 package.

The Altitude Adjusted Corrected Geomagnetic Coordinates library is used
to calculate the latitude, longitude, and local time
of the spacecraft with respect to the geomagnetic field.

	Parameters:

	
	inst (pysat.Instrument) – instrument object including lat, lon, and alt as timeseries

	glat_label (string) – label used in inst to identify WGS84 geodetic latitude (degrees N)

	glong_label (string) – label used in inst to identify WGS84 geodetic longitude (degrees E)

	alt_label (string) – label used in inst to identify WGS84 geodetic altitude (km, height
above surface)

	Returns:

	Input pysat.Instrument object modified to include quasi-dipole
coordinates, ‘aacgm_lat’ for magnetic latitude, ‘aacgm_long’ for
longitude, and ‘aacgm_mlt’ for magnetic local time.

	Return type:

	inst

Example

function added velow modifies the inst object upon every inst.load
call inst.custom.attach(add_quasi_dipole_coordinates,
kwargs={‘glat_label’: ‘custom_label’})

	
pysatMissions.methods.magcoord.add_quasi_dipole_coordinates(inst, glat_label='glat', glong_label='glong', alt_label='alt')

	Add quasi-dipole coordinates to instrument object using Apexpy package.

The Quasi-Dipole coordinate system includes both the tilt and offset of the
geomagnetic field to calculate the latitude, longitude, and local time
of the spacecraft with respect to the geomagnetic field.

This system is preferred over AACGM near the equator for LEO satellites.

	Parameters:

	
	inst (pysat.Instrument) – instrument object including lat, lon, and alt as timeseries

	glat_label (string) – label used in inst to identify WGS84 geodetic latitude (degrees)

	glong_label (string) – label used in inst to identify WGS84 geodetic longitude (degrees)

	alt_label (string) – label used in inst to identify WGS84 geodetic altitude (km, height
above surface)

	Returns:

	Input pysat.Instrument object modified to include quasi-dipole
coordinates, ‘qd_lat’ for magnetic latitude, ‘qd_long’ for longitude,
and ‘mlt’ for magnetic local time.

	Return type:

	inst

Example

function added velow modifies the inst object upon every inst.load
call inst.custom.attach(add_quasi_dipole_coordinates,
kwargs={‘glat_label’: ‘custom_label’})

spacecraft

Default routines for projecting values onto vectors for pysat instruments.

	
pysatMissions.methods.spacecraft.add_ram_pointing_sc_attitude_vectors(inst)

	Add attitude vectors for spacecraft assuming ram pointing.

Presumes spacecraft is pointed along the velocity vector (x), z is
generally nadir pointing (positive towards Earth), and y completes the
right handed system (generally southward).

	Parameters:

	inst (pysat.Instrument) – Instrument object

	Returns:

	Modifies pysat.Instrument object in place to include S/C attitude
unit vectors, expressed in ECEF basis. Vectors are named
sc_(x,y,z)hat_ecef_(x,y,z).
sc_xhat_ecef_x is the spacecraft unit vector along x (positive along
velocity vector) reported in ECEF, ECEF x-component.

	Return type:

	None

Notes

Expects velocity and position of spacecraft in Earth Centered
Earth Fixed (ECEF) coordinates to be in the instrument object
and named velocity_ecef_* (=x,y,z) and position_ecef_ (*=x,y,z)

Adds attitude vectors for spacecraft in the ECEF basis by calculating
the scalar product of each attitude vector with each component of ECEF.

	
pysatMissions.methods.spacecraft.calculate_ecef_velocity(inst)

	Calculate spacecraft velocity in ECEF frame.

Deprecated since version 0.4.0: This function is no longer needed with the deprecation of missions_ephem.
Better calculations are available through geospacepy and skyfield.
calculate_ecef_velocity will be removed in versions 0.5.0+

Presumes that the spacecraft velocity in ECEF is in
the input instrument object as position_ecef_*. Uses a symmetric
difference to calculate the velocity thus endpoints will be
set to NaN. Routine should be run using pysat data padding feature
to create valid end points.

	Parameters:

	inst (pysat.Instrument) – Instrument object

	Returns:

	Modifies pysat.Instrument object in place to include ECEF velocity
using naming scheme velocity_ecef_* (*=x,y,z)

	Return type:

	None

	
pysatMissions.methods.spacecraft.normalize(vector)

	Normalize a time-series of vectors.

	Parameters:

	vector (pds.DataFrame) – A time-series consisting of vector components at each time step.

	Returns:

	norm_vector – The normalized version of vector

	Return type:

	pds.DataFrame

	
pysatMissions.methods.spacecraft.project_ecef_vector_onto_sc(inst, x_label, y_label, z_label, new_x_label, new_y_label, new_z_label, meta=None)

	Express input vector using s/c attitude directions.

x - ram pointing
y - generally southward
z - generally nadir

	Parameters:

	
	x_label (string) – Label used to get ECEF-X component of vector to be projected

	y_label (string) – Label used to get ECEF-Y component of vector to be projected

	z_label (string) – Label used to get ECEF-Z component of vector to be projected

	new_x_label (string) – Label used to set X component of projected vector

	new_y_label (string) – Label used to set Y component of projected vector

	new_z_label (string) – Label used to set Z component of projected vector

	meta (array_like of dicts (None)) – Dicts contain metadata to be assigned.

Instrument Methods

Orbits

Methods to convert orbital information for propagators.

	
pysatMissions.instruments.methods.orbits.convert_from_keplerian(eccentricity, mean_motion, planet='earth')

	Calculate orbital eccentricity from periapsis and apoapsis.

	Parameters:

	
	eccentricity (float) – The eccentricty of the orbit (unitless)

	mean_motion (float) – The mean angular speed of the orbit (rad/minute)

	planet (str) – The name of the planet of interest. Used for radial calculations.
(default=’earth’)

	Returns:

	
	alt_periapsis (float) – The lowest altitude from the mean planet surface along the orbit (km)

	alt_apoapsis (float) – The highest altitude from the mean planet surface along the orbit (km)

	
pysatMissions.instruments.methods.orbits.convert_to_keplerian(alt_periapsis, alt_apoapsis=None, planet='earth')

	Calculate orbital eccentricity from periapsis and apoapsis.

	Parameters:

	
	alt_periapsis (float) – The lowest altitude from the mean planet surface along the orbit (km)

	alt_apoapsis (float or NoneType) – The highest altitude from the mean planet surface along the orbit (km)
If None, assumed to be equal to periapsis. (default=None)

	planet (str) – The name of the planet of interest. Used for radial calculations and
mass. (default=’earth’)

	Returns:

	
	eccentricity (float) – The eccentricty of the orbit (unitless)

	mean_motion (float) – The mean angular speed of the orbit (rad/minute)

Tutorial

Set up sgp4 with pysat

The Missions SGP4 instrument within pysatMissions is designed to be run
like any pysat instrument. To access, use

import pysat
from pysatMissions.instruments import missions_sgp4

sgp4 = pysat.Instrument(inst_module=missions_sgp4)

This can be permanently added via the instrument registry.

import pysat
import pysatMissions
pysat.utils.registry.register('pysatMissions.instruments.missions_sgp4')

or, to register all modules in pysat

import pysat
import pysatMissions
pysat.utils.registry.register_by_module(pysatMissions.instruments)

For other instruments, simply replace the module name (in this case, missions_sgp4)
with the name of the desired instrument.

Orbital Propagators

Currently, two orbital propagators are included with pysatMissions. The
Missions SGP4 instrument uses the wgs72 gravity model to provide satellite
position and velocity in ECI coordinates. The Missions ephem instrument
uses the ephem pysat package to calculate an orbit in lat/lon/alt and ECEF
coordinates. As an example, it also loads a series of empirical models to
provide simulated magnetic data as an aid for mission planning.

The orbital propagators are activated by the load command, similar to any
pysat instrument. To generate a simulated hour of orbital information with a
one-second cadence, run

sgp4 = pysat.Instrument(inst_module=missions_sgp4, num_samples=3600)
sgp4.load(2019, 1)

Empirical Models

A number of methods are included to invoke several python wrappers for empirical
models. This includes the aacgmv2, apexpy, and OMMBV models. These
methods can be added to any pysat instrument using the custom functions in
pysat. The example below adds the aacgmv2 coordinates to sgp4 instrument.

import pysat
from pysatMissions.methods import magcoord

sgp4 = pysat.Instrument(inst_module=missions_sgp4, num_samples=3600)
sgp4.custom_attach(magcoord.add_aacgm_coordinates,
 kwargs={'glat_label': 'geod_latitude',
 'glong_label': 'geod_longitude',
 'alt_label': 'geod_altitude'})
sgp4.load(2019, 1)

Note that the latitude, longitude, and altitude variable names of the
instrument should be specified since the dataset may use different variable
names from those in the custom function. The method to add these empirical
functions to a pysat instrument is identical across the pysat ecosystem.

References

aacgmv2

[image: _images/zenodo.1212694.svg]
 [https://doi.org/10.5281/zenodo.1212694]aacgmv2 [https://github.com/aburrell/aacgmv2] is a python library for
accessing the Altitude-Adjusted Corrected Geomagnetic (AACGM) coordinates.

	Baker, K. B., & Wing, S. (1989). A new magnetic coordinate system for
conjugate studies at high latitudes. Journal of Geophysical Research, 94,
9139–9143.

	Shepherd, S. G. (2014). Altitude−adjusted corrected geomagnetic coordinates:
Definition and functional approximations. Journal of Geophysical Research:
Space Physics, 119, 7501–7521. DOI: 10.1002/2014JA020264

apexpy

[image: _images/zenodo.1214206.svg]
 [https://doi.org/10.5281/zenodo.1214206]apexpy [https://github.com/aburrell/apexpy] is a python library for
calculating magnetic apex coordinates.

	Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex
coordinates. Journal of Geomagnetism and Geoelectricity, 47(2), 191–212.

	Emmert, J. T., Richmond, A. D., & Drob, D. P. (2010). A computationally
compact representation of magnetic-apex and quasi-dipole coordinates with
smooth base vectors. Journal of Geophysical Research, 115, A08322.
DOI: 10.1029/2010JA015326

	Laundal, K. M., & Richmond, A. D. (2017). Magnetic coordinate systems. Space
Science Reviews, 206, 27–59

OMMBV

[image: _images/zenodo.1299374.svg]
 [https://doi.org/10.5281/zenodo.1299374]OMMBV [https://github.com/rstoneback/OMMBV] calculates
Orthogonal Multipole Magnetic Basis Vectors for the earth’s magnetic field.

Guide for Developers

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing
	Short version

	Bug reports

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Project Style Guidelines

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at pysat.developers@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing

Bug reports, feature suggestions and other contributions are greatly
appreciated! pysatMissions is a community-driven project and welcomes both feedback and contributions.

Come join us on Slack! An invitation to the pysat workspace is available
in the ‘About’ section of the
pysat GitHub Repository. [https://github.com/pysat/pysat] Development meetings
are generally held fortnightly.

Short version

	Submit bug reports and feature requests at GitHub [https://github.com/pysat/pysatMissions/issues]

	Make pull requests to the develop branch

Bug reports

When reporting a bug [https://github.com/pysat/pysatMissions/issues] please
include:

	Your operating system name and version

	Any details about your local setup that might be helpful in troubleshooting

	Detailed steps to reproduce the bug

Feature requests and feedback

The best way to send feedback is to file an issue at
GitHub [https://github.com/pysat/pysatMissions/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions
are welcome :)

Development

To set up pysatMissions for local development:

	Fork pysat on GitHub [https://github.com/pysat/pysatMissions/fork].

	Clone your fork locally:

git clone git@github.com:your_name_here/pysatMissions.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

Tests for new instruments are performed automatically. Tests for custom
functions should be added to the appropriately named file in
pysatMissions/tests. If no test file exists, then you should create
one. This testing uses pytest, which will run tests on any python file in
the test directory that starts with test_ as well.

	When you’re done making changes, run all the checks to ensure that nothing
is broken on your local system:

pytest -vs

	You should also check for flake8 style compliance:

flake8 . --count --select=D,E,F,H,W --show-source --statistics

Note that pysat uses the flake-docstrings and hacking packages to ensure
standards in docstring formatting.

	Update/add documentation (in docs), if relevant

	Add your name to the .zenodo.json file as an author

	Commit your changes:

git add .
git commit -m "AAA: Brief description of your changes"

Where AAA is a standard shorthand for the type of change (eg, BUG or DOC).
pysat follows the numpy development workflow [https://numpy.org/doc/stable/dev/development_workflow.html],
see the discussion there for a full list of this shorthand notation.

	Once you are happy with the local changes, push to GitHub:

git push origin name-of-your-bugfix-or-feature

Note that each push will trigger the Continuous Integration workflow.

	Submit a pull request through the GitHub website. Pull requests should be
made to the develop branch. Note that automated tests will be run on
GitHub Actions, but these must be initialized by a member of the pysat team.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just
make a pull request. Pull requests should be made to the develop branch.

For merging, you should:

	Include an example for use

	Add a note to CHANGELOG.md about the changes

	Update the author list in zenodo.json if applicable

	Ensure that all checks passed (current checks include Github Actions and
Coveralls)

If you don’t have all the necessary Python versions available locally or
have trouble building all the testing environments, you can rely on
GitHub Actions to run the tests for each change you add in the pull
request. Because testing here will delay tests by other developers,
please ensure that the code passes all tests on your local system first.

Project Style Guidelines

In general, pysat follows PEP8 and numpydoc guidelines. Pytest runs the unit
and integration tests, flake8 checks for style, and sphinx-build performs
documentation tests. However, there are certain additional style elements that
have been settled on to ensure the project maintains a consistent coding style.
These include:

	Line breaks should occur before a binary operator (ignoring flake8 W503)

	Combine long strings using join

	Preferably break long lines on open parentheses rather than using \

	Use no more than 80 characters per line

	Avoid using Instrument class key attribute names as unrelated variable names:
platform, name, tag, and inst_id

	The pysat logger is imported into each sub-module and provides status updates
at the info and warning levels (as appropriate)

	Several dependent packages have common nicknames, including:

	import datetime as dt

	import numpy as np

	import pandas as pds

	import xarray as xr

	All classes should have __repr__ and __str__ functions

	Docstrings use Note instead of Notes

	Try to avoid creating a try/except statement where except passes

	Use setup and teardown in test classes

	Use pytest parametrize in test classes when appropriate

	Provide testing class methods with informative failure statements and
descriptive, one-line docstrings

	Block and inline comments should use proper English grammar and punctuation
with the exception of single sentences in a block, which may then omit the
final period

	When casting is necessary, use np.int64 and np.float64 to ensure operating
system agnosticism

Change Log

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning [https://semver.org/].

[0.3.4] - 2023-06-22

	Add support for skyfield propagation

	Maintenance

	Update pytest syntax

	Update Github Actions versions

	Add manual GitHub Actions tests for pysat RC

	Add manual GitHub Actions tests for optional dependencies

	Add manual GitHub Actions tests for pysatMissions RC

	Remove optional dependencies in readthedocs requirements

	Add tests for NEP 29 testing

	Add tests for Mac OS

	Deprecate calculate_ecef_velocity method

	Use pyproject.toml to handle metadata / installation

	Update GitHub Actions workflow standards

	Testing

	Include checks on sc coordinate transformation calculations

[0.3.3] - 2022-09-06

	Documentation Updates

[0.3.2] - 2022-09-06

	Make fortran dependencies optional installs

	aacgmv2

	apexpy

	OMMBV

	Access logger directly from pysat

	Use pysat deprecation tests

	Incorporate Windows tests into Github Actions

	Bug Fix

	Ensure default num_samples consistent for one day regardless of cadence

	Maintenance

	Update instrument test standards

	Added utils.package_check, a standard decorator to bypass functions using
packages that are optional installs if the package is not installed

	Use local vector functions rather than import from OMMBV

[0.3.1] - 2022-05-18

	Include license in package manifest

[0.3.0] - 2022-05-13

	Add Keplerian orbital inputs into missions_sgp4

	Update sgp4 interface to use new syntax for initialization from TLEs

	Include conversions to geodetic latitude / longitude / altitude for sgp4

	Improve metadata generation in missions_sgp4

	Update syntax to be compliant with OMMBV 1.0

	Documentation

	Improve docstrings throughout

	Added bypass for apexpy for readthedocs build

	Deprecations

	Deprecated missions_ephem, as pyephem will no longer be updated

	Testing

	Add style check for docstrings

	Added checks for deprecation warnings

	Improve checks in codeclimate

[0.2.2] - 2021-06-18

	Migrate pyglow interface to pysatIncubator

	Style updates for consistency with pysat 3.0

	Use inst_id instead of sat_id

	Use cadence instead of freq

	Use ‘missions’ as the platform name (‘pysat’ now reserved for core code)

	Migrate CI testing to Github Actions

	Use OMMBV instead of pysatMagVect

[0.2.1] - 2020-07-29

	Use conda to manage Travis CI environment

	Updated style to be compliant with pandas 2.0 and pysat 3.0

	Import datetime from datetime

	import DataFrame and Series from pandas rather than pysat

	Rename default branch as main

[0.2.0] - 2020-03-07

	Renamed as pysatMissions

	Added method files to access aacgmv2, apexpy, pyglow for any pysat instrument

	Added method for spacecraft to handle attitude and coordinates

	Added method for plotting simulated data

	Added support for readthedocs

	Updates to testing environment

	Split pysat_sgp4 into pysat_sgp4 and pysat_ephem to allow different propagators

	Removed basemap

	Added numeric strings as options for sat_id

	Added _get_times to streamline time steps for simulated instruments

	Bugs

	Fixed wrong metadata name for mlt in apexpy

[0.1.1] - 2019-10-22

	pypi compatibility

	Add DOI badge

[0.1.0] - 2019-10-07

	Initial release

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysatMissions	

 	
 	
 pysatMissions.instruments.methods.orbits	

 	
 	
 pysatMissions.instruments.missions_ephem	

 	
 	
 pysatMissions.instruments.missions_sgp4	

 	
 	
 pysatMissions.methods.magcoord	

 	
 	
 pysatMissions.methods.spacecraft	

Index

 A
 | C
 | I
 | L
 | M
 | N
 | P

A

 	
 	add_aacgm_coordinates() (in module pysatMissions.methods.magcoord)

 	
 	add_quasi_dipole_coordinates() (in module pysatMissions.methods.magcoord)

 	add_ram_pointing_sc_attitude_vectors() (in module pysatMissions.methods.spacecraft)

C

 	
 	calculate_ecef_velocity() (in module pysatMissions.methods.spacecraft)

 	
 	convert_from_keplerian() (in module pysatMissions.instruments.methods.orbits)

 	convert_to_keplerian() (in module pysatMissions.instruments.methods.orbits)

I

 	
 	init() (in module pysatMissions.instruments.missions_ephem)

 	(in module pysatMissions.instruments.missions_sgp4)

L

 	
 	load() (in module pysatMissions.instruments.missions_ephem)

 	(in module pysatMissions.instruments.missions_sgp4)

M

 	
 	
 module

 	pysatMissions.instruments.methods.orbits

 	pysatMissions.instruments.missions_ephem

 	pysatMissions.instruments.missions_sgp4

 	pysatMissions.methods.magcoord

 	pysatMissions.methods.spacecraft

N

 	
 	normalize() (in module pysatMissions.methods.spacecraft)

P

 	
 	preprocess() (in module pysatMissions.instruments.missions_ephem)

 	project_ecef_vector_onto_sc() (in module pysatMissions.methods.spacecraft)

 	
 pysatMissions.instruments.methods.orbits

 	module

 	
 pysatMissions.instruments.missions_ephem

 	module

 	
 	
 pysatMissions.instruments.missions_sgp4

 	module

 	
 pysatMissions.methods.magcoord

 	module

 	
 pysatMissions.methods.spacecraft

 	module

 _images/poweredbypysat.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the pysatMissions documentation!

 		
 Introduction

 		
 Main Features

 		
 Installation

 		
 Prerequisites

 		
 Installation Options

 		
 Post Installation

 		
 Citation Guidelines

 		
 pysatMissions

 		
 Supported Instruments

 		
 Missions ephem

 		
 Properties

 		
 init()

 		
 load()

 		
 preprocess()

 		
 Missions SGP4

 		
 Properties

 		
 init()

 		
 load()

 		
 Missions Skyfield

 		
 Methods

 		
 magcoord

 		
 add_aacgm_coordinates()

 		
 add_quasi_dipole_coordinates()

 		
 spacecraft

 		
 add_ram_pointing_sc_attitude_vectors()

 		
 calculate_ecef_velocity()

 		
 normalize()

 		
 project_ecef_vector_onto_sc()

 		
 Instrument Methods

 		
 Orbits

 		
 convert_from_keplerian()

 		
 convert_to_keplerian()

 		
 Tutorial

 		
 Set up sgp4 with pysat

 		
 Orbital Propagators

 		
 Empirical Models

 		
 References

 		
 aacgmv2

 		
 apexpy

 		
 OMMBV

 		
 Guide for Developers

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Contributing

 		
 Short version

 		
 Bug reports

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Project Style Guidelines

 		
 Change Log

 		
 [0.3.4] - 2023-06-22

 		
 [0.3.3] - 2022-09-06

 		
 [0.3.2] - 2022-09-06

 		
 [0.3.1] - 2022-05-18

 		
 [0.3.0] - 2022-05-13

 		
 [0.2.2] - 2021-06-18

 		
 [0.2.1] - 2020-07-29

 		
 [0.2.0] - 2020-03-07

 		
 [0.1.1] - 2019-10-22

 		
 [0.1.0] - 2019-10-07

